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Motivation

What is not surrounded by 
uncertainty cannot be the 
truth.

Richard Feynman



Outline

1. Uncertainty: What is it and what are its properties
2. Uncertainty: Where does it come from in the context of simulations 

that cannot be run often enough to create an ensemble
3. Uncertainty:  How does it propagate?
4. Uncertainty:  A working definition for purposes of visualization
5. Density: A key idea borrowed from continuum mechanics
6. Uncertainty: From value to visualization and back again
7. Requirements for successful, effective visualization (of uncertainty)
8. Depicting density
9. From glyph to field via representative values that explain data
10.Several methods for visualizing uncertainty in 2D,3D, …
11.Future



Traits of  Effective Uncertainty 
Visualization

•Works in 2,3,4,4+ Dimensions 
•Does not interfere or distract from underlying visualization of data
•Scales with

• data set size, 
•resolution

•Permits
• drill down,
• query, and
• analysis 

•Agnostic to gridding
•Solid basis in:

•Statistics
•Informatics

•Easily  understood by Domain Scientists
•Extensible to vectors, tensors, lists, spectra



What is Uncertainty?
Uncertainty is the result of 
selecting one option from a set of 
(equally) plausible alternatives. 

Our goal is to meld statistical 
thinking with visualization practice 
to allow the tracking of how 
uncertainty arises, propagates and 
affects computed results

One critical question is how 
uncertainty can be incorporated or 
extracted from very few (~1) 
simulation 



Quantitative Uncertainty
We are all certain about one thing-that there exists something called 
uncertainty.  

For the most part, for most people, uncertainty exists almost entirely 
in the range conaining the final outcome of the simulation.  

For our purposes, we shall use this partial and almost begrudging 
consensus to define our uncertainty.
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That is, the uncertainty has the same units and 
properties as the parameter



Origins of Uncertainty in Simulation

Simulation is overwhelmingly deterministic (except for 
application of Monte Carlo methods).  Where is the 
uncertainty in arithmetic?  We can’t run our models more than 
a few times, not even for a rudimentary LHS design.

Uncertainty is certainly present in:
•Boundary and initial conditions
•Material properties 
•Finite sampling

It also arises whenever a particular algorithm is used as in:
•Interpolation
•Quadrature
•Fitting



Visualizing Ultrascale Data, Cautionary
It is common knowledge that the chief block to visualizing 
today’s ultrascale data is that the I/O channel from disk to 
screen is overwhelmed, massively.  

And, we have just doubled the load, adding the uncertainty at 
each point to the parameter in question.   Are we crazy????

We assert that when there are more points than pixels, then the concept of 
point has neither meaning nor utility.  

We cannot continue to cede the decision of how many 
micropolygons can be rendered and then transformed to a single 
colored pixel to the GPU because it was designed  to the 
specifications of the special effects, gaming, and entertainment 
industries, all devoted to the creation and maintenance of 
illusion.



From point to field, via density
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Size Matters
F o r  a  f ix e d  v o lu m e  V , f in d  a m o u n t o f   in  V  
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Each Box contains the same mass, 
so size changes
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Implementation Impediments



Mapmaker’s Dilemma

Balance distortion 
in:
•Area per cell
•Angle and shape
•Direction

There is no 
projection that 
preserves all 
features 



Implementation Options

cartogram Thin plate spline

Fishnet deformation
Delaunay Field Tessellation Estimator



Chan-Vese Active Contours



Implementation Impediment
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Iterative Refinement

F o r  K  p o ly g o n s  { V }  a n d  p o in ts  { p } :
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Optimal solution is found 
by iterative refinement.  
The method borrows much 
from force directed graph 
placement 
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Traits of  Effective Uncertainty 
Visualization

•Works in 2,3,4,4+ Dimensions 
•Does not interfere or distract from underlying visualization of data
•Scales with

• data set size, 
•resolution

•Permits
• drill down,
• query, and
• analysis 

•Agnostic to gridding
•Solid basis in:

•Statistics
•Informatics

•Easily  understood by Domain Scientists
•Extensible to vectors, tensors, lists, spectra

So, how did we do,
admittedly according to 

our own   scorecard



Takeaway Points & Conceptual Pillars
•Uncertainty is the side-effect of arbitrary selection from choices
•Uncertainty is measured same as the underlying parameter
•There is much to be gained and very little to be lost in replacing 

value at a point with that of  pdf in a region.  
•Density of a field should therefore replace discrete samples.
•Density and concentration can be conveyed by displaying the space 
needed to   enclose regions containing the same amount of parameter
•The tessellation into regions of equal content is best done by DFTE
•Uncertainty can be derived from the EnKF


